If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125^-b=(1/5)^-b-3
We move all terms to the left:
125^-b-((1/5)^-b-3)=0
Domain of the equation: 5)^-b-3)!=0We add all the numbers together, and all the variables
b!=0/1
b!=0
b∈R
-b-((+1/5)^-b-3)+125^=0
We add all the numbers together, and all the variables
-1b-((+1/5)^-b-3)=0
We multiply all the terms by the denominator
-1b*5)^-b-3)-((+1=0
Wy multiply elements
-5b^2+1=0
a = -5; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-5)·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-5}=\frac{0-2\sqrt{5}}{-10} =-\frac{2\sqrt{5}}{-10} =-\frac{\sqrt{5}}{-5} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-5}=\frac{0+2\sqrt{5}}{-10} =\frac{2\sqrt{5}}{-10} =\frac{\sqrt{5}}{-5} $
| 7/4x=20 | | 8x+5=95-2x | | 2x+4=1.5x+4 | | 2a-4=3-a | | 2x-4+3x=24 | | 0,25x=2 | | k/5-13=7 | | 0.6m-4.4-4.8m=-11 | | 4x+15+5x-15=180 | | 6x^2+7=115 | | 2y^2+6-y^2=9 | | n^2+4n^2-3=17 | | 7*(-3)+4y=28 | | x^2+3+2x^2=3 | | 7(-3)+4y=28 | | 5p^2-980=0 | | 4m^2-11=52-3m^2 | | 8a+5=23 | | 2x+2.5Y=360 | | 6v-3=21 | | b+2b=22.5 | | 5z+12z=13 | | 1x+.5Y=175 | | q(11+8q–2q^2)=0 | | 4x^2=6=7 | | X²+x-x(x+1)=0 | | y^2+6=17 | | 5x+7=8+9x | | y+0.05*y=47.5 | | 2(v+8)-4v=20 | | 2x+75=107 | | 81c^2-10=15 |